Meloxicam increases intracellular accumulation of doxorubicin via downregulation of multidrug resistance-associated protein 1 (MRP1) in A549 cells.
نویسندگان
چکیده
It has been suggested that selected COX inhibitors can overcome multidrug resistance through the inhibition of ATP‑binding cassette-transporter proteins thereby enhancing the inhibitory effect of doxorubicin on human tumor growth and promoting the actions of cytostatics. However, their effect on lung cancer and the molecular mechanisms involved in the overcoming of multidrug resistance are unclear. In the present study, the ability of meloxicam, a COX-2-specific inhibitor to enhance doxorubicin‑mediated inhibition was investigated in human A549 lung cancer in vivo and in vitro. In order to unravel the molecular mechanisms involved in doxorubicin accumulation, we measured the levels of multidrug resistance-associated protein (MRP)-transporter protein activity and expression by western blotting, since this has been implicated in meloxicam action as well as in chemoresistance. We found that, in A549 cells, meloxicam could increase intracellular accumulation of doxorubicin, a substrate for MRP, through inhibition of cellular export. Western blot analysis indicated that meloxicam reduced the expression of MRP1 and MRP4. The results reported in the present study demonstrate for the first time that the specific COX-2 inhibitor meloxicam can increase the intracellular accumulation of doxorubicin and enhance doxorubicin-induced cytotoxicity in A549 cancer cells by reducing the expression of MRP1 and MRP4.
منابع مشابه
Casein kinase 2α regulates multidrug resistance-associated protein 1 function via phosphorylation of Thr249.
We have shown previously that the function of Ycf1p, yeast ortholog of multidrug resistance-associated protein 1 (MRP1), is regulated by yeast casein kinase 2α (Cka1p) via phosphorylation at Ser251. In this study, we explored whether casein kinase 2α (CK2α), the human homolog of Cka1p, regulates MRP1 by phosphorylation at the semiconserved site Thr249. Knockdown of CK2α in MCF7-derived cells ex...
متن کاملmiR-145 sensitizes breast cancer to doxorubicin by targeting multidrug resistance-associated protein-1
Multidrug resistance-associated protein 1 (MRP1) is an important efflux transporter and overexpression of MRP1 usually leads to chemoresistance in breast cancer. Here, we found MRP1 overexpressed in human breast cancer tissues and breast cancer cell lines (compared with normal breast tissues and cell line, respectively). And MRP1 level increased in doxorubicin resistant MCF-7 cells compared wit...
متن کاملCyclooxygenase-independent down-regulation of multidrug resistance-associated protein-1 expression by celecoxib in human lung cancer cells.
The recent finding of a link between cyclooxygenase-2 (COX-2) and p-glycoprotein expression suggests that COX-2 is involved in the development of the multidrug resistance (MDR) phenotype. MDR-associated protein 1 (MRP1) is another major MDR-related protein that is frequently overexpressed in cancer patients, including those with lung cancer. Based on our observation that among four human epithe...
متن کاملSubcellular localization and activity of multidrug resistance proteins.
The multidrug resistance (MDR) phenotype is associated with the overexpression of members of the ATP-binding cassette family of proteins. These MDR transporters are expressed at the plasma membrane, where they are thought to reduce the cellular accumulation of toxins over time. Our data demonstrate that members of this family are also expressed in subcellular compartments where they actively se...
متن کاملTimosaponin A-III reverses multi-drug resistance in human chronic myelogenous leukemia K562/ADM cells via downregulation of MDR1 and MRP1 expression by inhibiting PI3K/Akt signaling pathway.
One of the major causes of failure in chemotherapy for patients with human chronic myelogenous leukemia (CML) is the acquisition of multidrug resistance (MDR). MDR is often associated with the overexpression of drug efflux transporters of the ATP-binding cassette (ABC) protein family. Timosaponin A-III (TAIII), a saponin isolated from the rhizome of Anemarrhena asphodeloides, has previously dem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics and molecular research : GMR
دوره 14 4 شماره
صفحات -
تاریخ انتشار 2015